viernes, 27 de diciembre de 2013

Dynamic Modeling of Cost-effectiveness of Rotavirus Vaccination, Kazakhstan - Volume 20, Number 1—January 2014 - Emerging Infectious Disease journal - CDC

full-text ►
Dynamic Modeling of Cost-effectiveness of Rotavirus Vaccination, Kazakhstan - Volume 20, Number 1—January 2014 - Emerging Infectious Disease journal - CDC
link to Volume 20, Number 1—January 2014


Volume 20, Number 1—January 2014

Research

Dynamic Modeling of Cost-effectiveness of Rotavirus Vaccination, Kazakhstan

Birgitte Freiesleben de BlasioComments to Author , Elmira Flem, Renat Latipov, Ajnagul Kuatbaeva, and Ivar Sønbø Kristiansen
Author affiliations: Norwegian Institute of Public Health, Oslo, Norway (B. Freiesleben de Blasio, E. Flem)University of Oslo, Norway (B. Freiesleben de Blasio, I.S. Kristiansen)Research Institute of Virology, Tashkent, Republic of Uzbekistan (R. Latipov)Scientific-Practical Centre of Epidemiologic Surveillance, Almaty, Republic of Kazakhstan (A. Kuatbaeva)

Abstract

The government of Kazakhstan, a middle-income country in Central Asia, is considering the introduction of rotavirus vaccination into its national immunization program. We performed a cost-effectiveness analysis of rotavirus vaccination spanning 20 years by using a synthesis of dynamic transmission models accounting for herd protection. We found that a vaccination program with 90% coverage would prevent ≈880 rotavirus deaths and save an average of 54,784 life-years for children < 5 years of age. Indirect protection accounted for 40% and 60% reduction in severe and mild rotavirus gastroenteritis, respectively. Cost per life year gained was US $18,044 from a societal perspective and US $23,892 from a health care perspective. Comparing the 2 key parameters of cost-effectiveness, mortality rates and vaccine cost at < US $2.78 per dose, vaccination program costs would be entirely offset. To further evaluate efficacy of a vaccine program, benefits of indirect protection conferred by vaccination warrant further study.
Rotavirus is the leading cause of severe acute gastroenteritis in children worldwide (1). Rotavirus vaccines Rotarix (GlaxoSmithKline Biologicals, Rixensart, Belgium) and Rotateq (Merck & Co., Whitehouse Station, NJ, USA) are in use in the national immunization programs in Australia, the United States, Latin America, and a few European countries. In these high- and middle-income countries, rotavirus effects have decreased markedly after introduction of the vaccine (24). Universal rotavirus vaccination has not been widely implemented in Asia, and the health effects of rotavirus differ considerably across the continent, with the highest mortality rates concentrated in developing areas. In Central Asia, there are also large variations in the reported rotavirus effects by country (5), emphasizing the need for local data to guide the decision on the introduction of the vaccine.
Kazakhstan is the most prosperous country in Central Asia. It has a population of 16 million (6) and a land mass equal to approximately half of the continental United States. Kazakhstan has large reservoirs of oil and natural gas and is classified as an upper-middle income economy; its gross national income was US $8,220 per capita in 2011 (7), making the country ineligible for international funds to introduce new vaccines. Vaccines included in the national childhood immunization program are fully funded by the government. The health effects of rotavirus in Kazakhstan were estimated at 68 deaths, 4,007 hospitalizations, and 32,500 outpatient visits during 2009 (5); another study estimated the total annual cost of rotavirus disease to be US $37.5 million (8). No current cost-effectiveness analyses of rotavirus vaccines were available for Kazakhstan.
Recently, 2 economic evaluations of the rotavirus vaccination were conducted in low-income countries in Central Asia (9,10), but because of differences in rotavirus epidemiology, health care costs, and economy, the results are not generalizable to Kazakhstan. These studies were performed on the basis of static models, which implicitly assume that the probability for disease exposure is constant in time. In contrast, immunization will not only reduce the probability of a vaccinated child to become ill but will also lower the exposure of the virus to others (i.e., herd protection).
Models that account for changes in transmission over time are referred to as dynamic models. Cost-effectiveness studies of rotavirus vaccination performed on the basis of dynamic transmission modeling were recently used in the United States (11), England, and Wales (12). To the best of our knowledge, this approach has not been applied in middle-income countries or in settings with a transitional economy. These countries face particular challenges because they are not eligible for international financing of vaccines, and their resources for new health interventions are limited. Rotavirus vaccine effectiveness has been shown to correlate with income level within a country (13). It is possible that rotavirus vaccines may perform worse in middle-income settings than in upper-income countries. Hence, scientifically sound estimates of the effect of rotavirus vaccination are in demand.
We present a cost-effectiveness study of rotavirus vaccination in a middle-income country using dynamic modeling. We incorporated direct effects such as death rates and indirect effects such as herd protection of a nationwide vaccination program. Our purpose for the study is twofold: to inform the impending decision on the introduction of rotavirus vaccination into the national immunization program in Kazakhstan, and to compare the cost-effectiveness of a rotavirus vaccination program in a middle-income country with that reported for high-income settings.

Materials and Methods

We adapted our previously published dynamic model for rotavirus (14,15) to Kazakhstan. The model is presented in the Technical Appendix Adobe PDF file [PDF - 783 KB - 13 pages].

References

  1. Centers for Disease Control and PreventionRotavirus surveillance—worldwide, 2009.[PubMed]MMWR Morb Mortal Wkly Rep2011;60:5146.PubMedExternal Web Site Icon
  2. Desai ROliveira LHParashar UDLopman BTate JEPatel MMReduction in morbidity and mortality from childhood diarrhoeal disease after species A rotavirus vaccine introduction in Latin America: a review. [PubMed]Mem Inst Oswaldo Cruz.2011;106:90711.PubMedExternal Web Site Icon
  3. Tate JECortese MMPayne DCCurns ATYen CEsposito DHUptake, impact, and effectiveness of rotavirus vaccination in the United States: review of the first 3 years of postlicensure data. Pediatr Infect Dis J2011;30:S56–60. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Buttery JPLambert SBGrimwood KNissen MDField EJMacartney KKReduction in rotavirus-associated acute gastroenteritis following introduction of rotavirus vaccine into Australia's National Childhood vaccine schedule. Pediatr Infect Dis J. 2011;30:S25–9.PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Latipov RUtegenova EKuatbayeva AKasymbekova KAbdykarimov SJuraev R,Epidemiology and burden of rotavirus disease in Central Asia. Int J Infect Dis.2011;15:e464–9. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Population Division of the Department of Economic and Social Affairs of theUnited Nations Secretar. World Population Prospects: The 2010 Revision. 2012. [cited 2012 Dec 1].http://esa.un.org/undp/wpp/index.htmlExternal Web Site Icon
  7. World dataBank. World Development Indicators and Global Development Finance. 2012. [cited 2012 Nov 25].http://databank.worldbank.org/ddp/home.doExternal Web Site Icon
  8. Latipov RKuatbaeva AKristiansen OAubakirova SAkhanaeva UKristiansen IS,Economic burden of rotavirus disease in children under 5 years in Kazakhstan. Vaccine.2011;29:4175–80. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Flem ETLatipov RNurmatov ZSXue YKasymbekova KTRheingans RDCosts of diarrheal disease and the cost-effectiveness of a rotavirus vaccination program in kyrgyzstan. J Infect Dis. 2009;200(Suppl 1):S195–202. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Isakbaeva ETMusabaev EAntil LRheingans RJuraev RGlass RIRotavirus disease in Uzbekistan: cost-effectiveness of a new vaccine. Vaccine. 2007;25:373–80. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Shim EGalvani APImpact of transmission dynamics on the cost-effectiveness of rotavirus vaccination. Vaccine. 2009;27:4025–30. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Atkins KEShim ECarroll SQuilici SGalvani APThe cost-effectiveness of pentavalent rotavirus vaccination in England and Wales. [PubMed]Vaccine2012;30:676676DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Patel MShane ALParashar UDJiang BGentsch JRGlass RIOral rotavirus vaccines: how well will they work where they are needed most? J Infect Dis. 2009;200(Suppl 1):S39–48. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. de Blasio BFKasymbekova KFlem EDynamic model of rotavirus transmission and the impact of rotavirus vaccination in Kyrgyzstan. Vaccine. 2010;28:7923–32. PubMed DOIExternal Web Site Icon
  15. Pitzer VEAtkins KEde Blasio BFVan ETAtchison CJHarris JPDirect and indirect effects of rotavirus vaccination: comparing predictions from transmission dynamic models. PLoS ONE. 2012;7:e42320. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  16. United Nations Population Divison Home page [cited 2012 Oct 1].http://www.un.org/esa/population/External Web Site Icon
  17. Agency of the Republic of Kazakhstan [cited 2012 Oct 1].http://www.eng.stat.kzExternal Web Site Icon
  18. United Nations Children’s Fund (UNICEF), Agency of the Republic of Kazakhstan on StatisticKazakhstan Multiple Indicator Cluster Survey 2006. 2007 [cited 2012 Dec 5]http://www.childinfo.org/files/MICS3_Kazakhstan_FinalReport_2006_Eng.pdf Adobe PDF fileExternal Web Site Icon
  19. Kapikian AZWyatt RGLevine MMYolken RHVanKirk DHDolin ROral administration of human rotavirus to volunteers: induction of illness and correlates of resistance. J Infect Dis. 1983;147:95–106. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. White LJButtery JCooper BNokes DJMedley GFRotavirus within day care centres in Oxfordshire, UK: characterization of partial immunity. J R Soc Interface. 2008;5:1481–90.PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Ward RLBernstein DIYoung ECSherwood JRKnowlton DRSchiff GMHuman rotavirus studies in volunteers: determination of infectious dose and serological response to infection. J Infect Dis. 1986;154:871–80. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Ward RLBernstein DIShukla RMcNeal MMSherwood JRYoung ECProtection of adults rechallenged with a human rotavirus. J Infect Dis. 1990;161:440–5. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Velázquez FRMatson DOCalva JJGuerrero LMorrow ALCarter-Campbell SRotavirus infections in infants as protection against subsequent infections. N Engl J Med.1996;335:1022–8. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Mäkelä MMarttila JSimell OIlonen J. Rotavirus-specific T-cell responses in young prospectively followed-up children. Clin Exp Immunol. 2004;137:173–8. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Vesikari TKarvonen AKorhonen TEspo MLebacq EForster JSafety and immunogenicity of RIX4414 live attenuated human rotavirus vaccine in adults, toddlers and previously uninfected infants. Vaccine. 2004;22:2836–42. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. Braeckman TVan HKMeyer NPircon JYSoriano-Gabarro MHeylen EEffectiveness of rotavirus vaccination in prevention of hospital admissions for rotavirus gastroenteritis among young children in Belgium: case-control study. BMJ. 2012;345:e4752. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  27. Justino MCLinhares ACLanzieri TMMiranda YMascarenhas JDAbreu EEffectiveness of the monovalent G1P[8] human rotavirus vaccine against hospitalization for severe G2P[4] rotavirus gastroenteritis in Belem, Brazil. Pediatr Infect Dis J. 2011;30:396–401.PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Yen CFigueroa JRUribe ESCarmen-Hernandez LDTate JEParashar UDMonovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico. J Infect Dis. 2011;204:783–6. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Vainio K. Rotavirus genotype distribution in Kyrgyzstan and Kazakhstan, 2007–2009.APMIS. 2013; 121(5):447-55. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Patel MPedreira CDe Oliveira LHUmana JTate JLopman BDuration of protection of pentavalent rotavirus vaccination in Nicaragua. Pediatrics. 2012;130:e365–72. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Armah GESow SOBreiman RFDallas MJTapia MDFeikin DREfficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial.Lancet. 2010;376:606–14. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Cortese MMImmergluck LCHeld MJain SChan TGrizas APEffectiveness of monovalent and pentavalent rotavirus vaccine. Pediatrics. 2013;132:e25–33. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  33. Staat MAPayne DCDonauer SWeinberg GAEdwards KMSzilagyi PGEffectiveness of pentavalent rotavirus vaccine against severe disease. Pediatrics. 2011;128:e267–75.PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. Akmatov MKKretzschmar MKramer AMikolajczyk RTDeterminants of childhood vaccination coverage in Kazakhstan in a period of societal change: implications for vaccination policies. Vaccine. 2007;25:1756–63. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  35. World Health OrganizationWorld Health Assembly Expanded Programme on Immunization. [cited 2013 Nov 14].http://www.who.int/immunization_delivery/en/External Web Site Icon
  36. Fischer TKAnh DDAntil LCat NDKilgore PEThiem VDHealth care costs of diarrheal disease and estimates of the cost-effectiveness of rotavirus vaccination in Vietnam. J Infect Dis. 2005;192:1720–6. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  37. Podewils LJAntil LHummelman EBresee JParashar UDRheingans RProjected cost-effectiveness of rotavirus vaccination for children in Asia. J Infect Dis. 2005;192(Suppl 1):S133–45. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  38. Atkins KEShim EPitzer VEGalvani APImpact of rotavirus vaccination on epidemiological dynamics in England and Wales. Vaccine. 2012;30:552–64. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon
  39. Vesikari TKarvonen AFerrante SACiarlet MEfficacy of the pentavalent rotavirus vaccine, RotaTeq(R), in Finnish infants up to 3 years of age: the Finnish Extension Study.Eur J Pediatr. 2010;169:1379–86. PubMed DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Tables

Technical Appendix

Suggested citation for this article: de Blasio B F, Flem E, Latipov R, Kuatbaeva A, Kristiansen IS. Dynamic modeling of cost-effectiveness of rotavirus vaccination, Kazakhstan. Emerg Infect Dis. 2013 Jan [date cited]. http://dx.doi.org/10.3201/eid2001.130019External Web Site Icon
DOI: 10.3201/eid2001.130019
Dynamic Modeling of Cost-effectiveness of Rotavirus Vaccination, Kazakhstan - Volume 20, Number 1—January 2014 - Emerging Infectious Disease journal - CDC

No hay comentarios:

Publicar un comentario