aportes a la gestión necesaria para la sustentabilidad de la SALUD PÚBLICA como figura esencial de los servicios sociales básicos para la sociedad humana, para la familia y para la persona como individuo que participa de la vida ciudadana.
domingo, 21 de abril de 2024
Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. April 17, 2024
https://psnet.ahrq.gov/issue/unmasking-bias-artificial-intelligence-systematic-review-bias-detection-and-mitigation
Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models.
Chen F, Wang L, Hong J, et al. J Am Med Inform Assoc. 2024.
When biased data are used for research, the results may reflect the same biases if appropriate precautions are not taken. In this systematic review, researchers describe possible types of bias (e.g., implicit, selection) that can result from research with artificial intelligence (AI) using electronic health record (EHR) data. Along with recommendations to reduce introducing bias into the data model, the authors stress the importance of standardized reporting of model development and real-world testing.
No hay comentarios:
Publicar un comentario