domingo, 8 de febrero de 2015

Preventing Chronic Disease | Administrative Data Linkage to Evaluate a Quality Improvement Program in Acute Stroke Care, Georgia, 2006–2009 - CDC

full-text ►

Preventing Chronic Disease | Administrative Data Linkage to Evaluate a Quality Improvement Program in Acute Stroke Care, Georgia, 2006–2009 - CDC



Preventing Chronic Disease Logo



Administrative Data Linkage to Evaluate a Quality Improvement Program in Acute Stroke Care, Georgia, 2006–2009

Moges Seyoum Ido, MD, MS, MPH; Rana Bayakly, MPH; Michael Frankel, MD; Rodney Lyn, PhD; Ike S. Okosun, MPH, PhD

Suggested citation for this article: Ido MS, Bayakly R, Frankel M, Lyn R, Okosun IS. Administrative Data Linkage to Evaluate a Quality Improvement Program in Acute Stroke Care, Georgia, 2006–2009. Prev Chronic Dis 2015;12:140238. DOI:http://dx.doi.org/10.5888/pcd12.140238External Web Site Icon.
PEER REVIEWED

Abstract

Introduction
Tracking the vital status of stroke patients through death data is one approach to assessing the impact of quality improvement in stroke care. We assessed the feasibility of linking Georgia hospital discharge data with mortality data to evaluate the effect of participation in the Georgia Coverdell Acute Stroke Registry on survival rates among acute ischemic stroke patients.
Methods
Multistage probabilistic matching, using a fine-grained record integration and linkage software program and combinations of key variables, was used to link Georgia hospital discharge data for 2005 through 2009 with mortality data for 2006 through 2010. Data from patients admitted with principal diagnoses of acute ischemic stroke were analyzed by using the extended Cox proportional hazard model. The survival times of patients cared for by hospitals participating in the stroke registry and of those treated at nonparticipating hospitals were compared.
Results
Average age of the 50,579 patients analyzed was 69 years, and 56% of patients were treated in Georgia Coverdell Acute Stroke Registry hospitals. Thirty-day and 365-day mortality after first admission for stroke were 8.1% and 18.5%, respectively. Patients treated at nonparticipating facilities had a hazard ratio for death of 1.14 (95% confidence interval, 1.03–1.26; P = .01) after the first week of admission compared with patients cared for by hospitals participating in the registry.
Conclusion
Hospital discharge data can be linked with death data to assess the impact of clinical-level or community-level chronic disease control initiatives. Hospitals need to undertake quality improvement activities for a better patient outcome.

Acknowledgments

The GCASR was funded by the Centers for Disease Control and Prevention under agreement no. U50/CCU 420275-01. We acknowledge the help of Cherie L. Drenzek, DVM, MS, Georgia state epidemiologist, in preparing this manuscript.

Author Information

Corresponding Author: Moges Seyoum Ido, MD, MS, MPH, Epidemiologist, Georgia Department of Public Health, 2 Peachtree St, NW, Suite 14-277, Atlanta, GA 30303-3142. Telephone: 404-463-8918. E-mail: Moges.Ido@dph.ga.gov.
Author Affiliations: Rana Bayakly, Georgia Department of Public Health, Atlanta, Georgia; Michael Frankel, Emory University, Atlanta, Georgia; Rodney Lyn, Ike S. Okosun, Georgia State University, Atlanta, Georgia.

References

  1. Bonomi AE, Wagner EH, Glasgow RE, VonKorff M. Assessment of chronic illness care (ACIC): a practical tool to measure quality improvement. Health Serv Res 2002;37(3):791–820. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  2. Measuring and improving quality of care: a report from the American Heart Association/American College of Cardiology First Scientific Forum on Assessment of Healthcare Quality in Cardiovascular Disease and Stroke. Circulation 2000;101(12):1483–93. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  3. DeVries D, Zhang Y, Qu M, Ma J, Lin G. Gender difference in stroke case fatality: an integrated study of hospitalization and mortality. J Stroke Cerebrovasc Dis 2013;22(7):931–7. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  4. Davidson GH, Hamlat CA, Rivara FP, Koepsell TD, Jurkovich GJ, Arbabi S. Long-term survival of adult trauma patients. JAMA 2011;305(10):1001–7. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  5. Kim AS, Fullerton HJ, Johnston SC. Risk of vascular events in emergency department patients discharged home with diagnosis of dizziness or vertigo. Ann Emerg Med 2011;57(1):34–41. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  6. Jurczyk P, Lu JJ, Xiong L, Cragan JD, Correa A. FRIL: a tool for comparative record linkage. AMIA Annu Symp Proc 2008:440–4. PubMedExternal Web Site Icon
  7. WWAMI Rural Health Research Center. RUCA data: code definitions, version 2.0. http://depts.washington.edu/uwruca/ruca-codes.php. Accessed April 26, 2012.
  8. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care 1998;36(1):8–27. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  9. HCUP Comorbidity software. Healthcare Cost and Utilization Project (HCUP). Rockville (MD): Agency for Healthcare Research and Quality; 2012. http://www.hcup-us.ahrq.gov/toolssoftware/comorbidity/comorbidity.jsp. Accessed December 22, 2013.
  10. Huang CY, Luo X, Follmann DA. A model checking method for the proportional hazards model with recurrent gap time data. Biostatistics 2011;12(3):535–47. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  11. Schwamm LH, Fonarow GC, Reeves MJ, Pan W, Frankel MR, Smith EE, et al. Get With the Guidelines–Stroke is associated with sustained improvement in care for patients hospitalized with acute stroke or transient ischemic attack. Circulation 2009;119(1):107–15. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  12. Stoeckle-Roberts S, Reeves MJ, Jacobs BS, Maddox K, Choate L, Wehner S, et al. Closing gaps between evidence-based stroke care guidelines and practices with a collaborative quality improvement project. Jt Comm J Qual Patient Saf 2006;32(9):517–27. PubMedExternal Web Site Icon
  13. Hills NK, Johnston SC. Duration of hospital participation in a nationwide stroke registry is associated with improved quality of care. BMC Neurol 2006;6(1):20.CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  14. California Acute Stroke Pilot Registry Investigators. The impact of standardized stroke orders on adherence to best practices. Neurology 2005;65(3):360–5.CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  15. Koton S, Tanne D, Green MS, Bornstein NM. Mortality and predictors of death 1 month and 3 years after first-ever ischemic stroke: data from the first National Acute Stroke Israeli Survey (NASIS 2004). Neuroepidemiology 2010;34(2):90–6. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  16. Han DS, Pan SL, Chen SY, Lie SK, Lien IN, Wang TG. Predictors of long-term survival after stroke in Taiwan. J Rehabil Med 2008;40(10):844–9. CrossRefExternal Web Site IconPubMedExternal Web Site Icon
  17. Kimura K, Minematsu K, Kazui S, Yamaguchi T; Japan Multicenter Stroke Investigators’ Collaboration (J-MUSIC). Mortality and cause of death after hospital discharge in 10,981 patients with ischemic stroke and transient ischemic attack. Cerebrovasc Dis 2005;19(3):171–8. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  18. Vernino S, Brown RD Jr, Sejvar JJ, Sicks JD, Petty GW, O’Fallon WM. Cause-specific mortality after first cerebral infarction: a population-based study. Stroke 2003;34(8):1828–32. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  19. Hardie K, Hankey GJ, Jamrozik K, Broadhurst RJ, Anderson C. Ten-year survival after first-ever stroke in the Perth Community Stroke Study. Stroke 2003;34(8):1842–6. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  20. Strbian D, Meretoja A, Ahlhelm FJ, Pitkäniemi J, Lyrer P, Kaste M, et al. Predicting outcome of IV thrombolysis-treated ischemic stroke patients: the DRAGON score. Neurology 2012;78(6):427–32. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  21. Saposnik G, Kapral MK, Liu Y, Hall R, O’Donnell M, Raptis S, et al. IScore: a risk score to predict death early after hospitalization for an acute ischemic stroke. Circulation 2011;123(7):739–49. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  22. Smith EE, Shobha N, Dai D, Olson DM, Reeves MJ, Saver JL, et al. Risk score for in-hospital ischemic stroke mortality derived and validated within the Get With the Guidelines–Stroke program. Circulation 2010;122(15):1496–504. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  23. Li B, Evans D, Faris P, Dean S, Quan H. Risk adjustment performance of Charlson and Elixhauser comorbidities in ICD-9 and ICD-10 administrative databases. BMC Health Serv Res 2008;8:12. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  24. Wang Y, Lim LL, Heller RF, Fisher J, Levi CR. A prediction model of 1-year mortality for acute ischemic stroke patients. Arch Phys Med Rehabil 2003;84(7):1006–11. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  25. St Germaine-Smith C, Liu M, Quan H, Wiebe S, Jette N. Development of an epilepsy-specific risk adjustment comorbidity index. Epilepsia 2011;52(12):2161–7. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  26. Quail JM, Lix LM, Osman BA, Teare GF. Comparing comorbidity measures for predicting mortality and hospitalization in three population-based cohorts. BMC Health Serv Res 2011;11:146. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  27. Lieffers JR, Baracos VE, Winget M, Fassbender K. A comparison of Charlson and Elixhauser comorbidity measures to predict colorectal cancer survival using administrative health data. Cancer 2011;117(9):1957–65. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  28. Chu YT, Ng YY, Wu SC. Comparison of different comorbidity measures for use with administrative data in predicting short- and long-term mortality. BMC Health Serv Res 2010;10:140. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  29. Tang J, Wan JY, Bailey JE. Performance of comorbidity measures to predict stroke and death in a community-dwelling, hypertensive Medicaid population. Stroke 2008;39(7):1938–44. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  30. Johnston JA, Wagner DP, Timmons S, Welsh D, Tsevat J, Render ML. Impact of different measures of comorbid disease on predicted mortality of intensive care unit patients. Med Care 2002;40(10):929–40. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  31. Zhu H, Hill MD. Stroke: the Elixhauser Index for comorbidity adjustment of in-hospital case fatality. Neurology 2008;71(4):283–7. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon

No hay comentarios: