sábado, 8 de febrero de 2014

Preventing Chronic Disease | Policy Changes to Implement Intramural Sports in North Carolina Middle Schools: Simulated Effects on Sports Participation Rates and Physical Activity Intensity, 2008–2009 - CDC

full-text ►

Preventing Chronic Disease | Policy Changes to Implement Intramural Sports in North Carolina Middle Schools: Simulated Effects on Sports Participation Rates and Physical Activity Intensity, 2008–2009 - CDC



PCD Logo



Policy Changes to Implement Intramural Sports in North Carolina Middle Schools: Simulated Effects on Sports Participation Rates and Physical Activity Intensity, 2008–2009

Michael B. Edwards, PhD; Michael A. Kanters, PhD; Jason N. Bocarro, PhD

Suggested citation for this article: Edwards MB, Kanters MA, Bocarro JN. Policy Changes to Implement Intramural Sports in North Carolina Middle Schools: Simulated Effects on Sports Participation Rates and Physical Activity Intensity, 2008–2009. Prev Chronic Dis 2014;11:130195. DOI: http://dx.doi.org/10.5888/pcd11.130195External Web Site Icon.
PEER REVIEWED

Abstract

Introduction
Extracurricular school sports programs can provide adolescents, including those who are economically disadvantaged, with opportunities to engage in physical activity. Although current models favor more exclusionary interscholastic sports, a better understanding is needed of the potential effects of providing alternative school sports options, such as more inclusive intramural sports. The purpose of this study was to simulate the potential effect of implementing intramural sports programs in North Carolina middle schools on both the rates of sports participation and on energy expenditure related to physical activity levels.
Methods
Simulations were conducted by using a school-level data set developed by integrating data from multiple sources. Baseline rates of sports participation were extrapolated from individual-level data that were based on school-level characteristics. A regression model was estimated by using the simulated baseline school-level sample. Participation rates and related energy expenditure for schools were calculated on the basis of 2 policy change scenarios.
Results
Currently, 37.2% of school sports participants are economically disadvantaged. Simulations suggested that policy changes to implement intramural sports along with interscholastic sports could result in more than 43,000 new sports participants statewide, of which 64.5% would be economically disadvantaged students. This estimate represents a 36.75% increase in economically disadvantaged participants. Adding intramural sports to existing interscholastic sports programs at all middle schools in North Carolina could have an annual effect of an additional 819,892.65 kilogram calories expended statewide.
Conclusion
Implementing intramural sports may provide economically disadvantaged students more access to sports, thus reducing disparities in access to school sports while increasing overall physical activity levels among all children.

Author Information

Corresponding Author: Michael B. Edwards, PhD, Department of Parks, Recreation, and Tourism Management, North Carolina State University, Box 8004 Biltmore Hall, Raleigh, NC 27695. Telephone: (919) 513-0060. E-mail: mbedwards@ncsu.edu.
Author Affiliations: Michael A. Kanters, PhD, Jason N. Bocarro, PhD, North Carolina State University, Raleigh, North Carolina.

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010. JAMA 2012;307(5):483–90. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  2. World Health Organization. Health and development through physical activity and sport. Geneva (CH): WHO Document Production Services; 2003. http://whqlibdoc.who.int/hq/2003/WHO_NMH_NPH_PAH_03.2.pdf. Accessed February 16, 2013.
  3. Paluska SA, Schwenk TL. Physical activity and mental health. Sports Med 2000;29(3):167–80. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  4. Sirard JR, Pfeiffer KA, Pate RR. Motivational factors associated with sports program participation in middle school students. J Adolesc Health 2006;38(6):696–703. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  5. Nelson TF, Stovitz SD, Thomas M, LaVoi NM, Bauer KW, Neumark-Sztainer D. Do youth sports prevent pediatric obesity? A systematic review and commentary. Curr Sports Med Rep 2011;10(6):360–70. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  6. Perkins DF, Jacobs JE, Barber BL, Eccles JS. Childhood and adolescent sports participation as predictors of participation in sports and physical fitness activities during young adulthood. Youth Soc 2004;35(4):495–520. CrossRefExternal Web Site Icon
  7. Edwards MB, Bocarro JN, Kanters MA. Place disparities in access to supportive environments for extracurricular physical activity in North Carolina middle schools. Youth Soc 2013;45(2):265–85. CrossRefExternal Web Site Icon
  8. Johnston LD, Delva J, O’Malley PM. Sports participation and physical education in American secondary schools: current levels and racial/ethnic and socioeconomic disparities. Am J Prev Med 2007;33(4 Suppl):S195–208. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  9. Casper JM, Bocarro JN, Kanters MA, Floyd MF. “Just let me play!” Understanding constraints that limit adolescent sport participation. J Phys Act Health 2011;8 Suppl 1:S32–9. PubMedExternal Web Site Icon
  10. Lee SM, Burgeson CR, Fulton JE, Spain CG. Physical education and physical activity: results from the School Health Policies and Programs Study 2006. J Sch Health 2007;77(8):435–63. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  11. Holt NL, Kingsley BC, Tink LN, Scherer J. Benefits and challenges associated with sport participation by children and parents from low-income families. Psychol Sport Exerc 2011;12(5):490–9. CrossRefExternal Web Site Icon
  12. Reeves K. Sports at any cost? Sch Administrator 2006;63(6):28–34.
  13. Leek D, Carlson JA, Cain KL, Henrichon S, Rosenberg D, Patrick K, et al. Physical activity during youth sports practices. Arch Pediatr Adolesc Med 2011;165(4):294–9. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  14. Wickel EE, Eisenmann JC. Contribution of youth sport to total daily physical activity among 6- to 12-yr-old boys. Med Sci Sports Exerc 2007;39(9):1493–500. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  15. Koplan JP, Liverman CT, Kraak VI. Preventing childhood obesity: health in the balance. Washington (DC): The National Academies Press; 2005.
  16. Kanters MA, Bocarro JN, Edwards MB, Casper JM, Floyd MF. School sport participation under two school sport policies: comparisons by race/ethnicity, gender, and socioeconomic status. Ann Behav Med 2013;45 Suppl 1:S113–21. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  17. National Association for Sport and Physical Education. Before- and after-school physical activity and intramural sport programs. Reston (VA): National Association for Sport and Physical Education, an Association of the American Alliance for Health, Physical Education, Recreation and Dance; 2013. http://www.aahperd.org/naspe/standards/positionStatements/upload/Guidelines-Before-After-School-PA-Intramurals-Draft-for-Board-11-27-12-2.pdf. Accessed September 5, 2013.
  18. Campbell M, Fitzpatrick R, Haines A, Kinmonth AL, Sandercock P, Spiegelhalter D, et al. Framework for design and evaluation of complex interventions to improve health. BMJ 2000;321(7262):694–6. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  19. Bocarro JN, Kanters MA, Cerin E, Floyd MF, Casper JM, Suau LJ, et al. School sport policy and school-based physical activity environments and their association with observed physical activity in middle school children. Health Place 2012;18(1):31–8. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  20. National Center for Education Statistics. National Education Longitudinal Study of 1988 (NELS: 88). http://nces.ed.gov/surveys/nels88/. Accessed July 4, 2011.
  21. McKenzie TL. The use of direct observation to assess physical activity. In: Welk G, editor. Physical activity assessments for health-related research. Champaign (IL): Human Kinetics; 2002. p. 179-96.
  22. Ridley K, Ainsworth B, Olds T. Development of a compendium of energy expenditures for youth. Int J Behav Nutr Phys Act 2008;5:45. CrossRefExternal Web Site IconPubMedExternal Web Site Icon
  23. Healthy Schools NC. N.C. Youth Risk Behavior Survey (YRBS). Department of Public Instruction and Department of Health and Human Services. www.nchealthyschools.org/data/yrbs. Accessed August 29, 2011.
  24. Outley CW, Floyd MF. The home they live in: inner city children’s views on the influence of parenting strategies on their leisure behavior. Leis Sci 2002;24(2):161–79. CrossRefExternal Web Site Icon
  25. Edwards MB, Kanters MA, Bocarro JN. Opportunities for extracurricular physical activity in North Carolina middle schools. J Phys Act Health 2011;8(5):597–605. PubMedExternal Web Site Icon
  26. Edwards MB, Jilcott SB, Floyd MF, Moore JB. County-level disparities in access to recreational resources and associations with adult obesity. J Park Recreat Admin 2011;29(2):39–54.
  27. Homer J, Milstein B, Wile K, Pratibhu P, Farris R, Orenstein DR. Modeling the local dynamics of cardiovascular health: risk factors, context, and capacity. Prev Chronic Dis 2008;5(2):A63. PubMedExternal Web Site Icon

No hay comentarios: