domingo, 18 de agosto de 2013

The EGAPP initiative: lessons learned : Genetics in Medicine : Nature Publishing Group

full-text and MORE ►
The EGAPP initiative: lessons learned : Genetics in Medicine : Nature Publishing Group




The EGAPP initiative: lessons learned

Genetics in Medicine
Published online


The Evaluation of Genomic Applications in Practice and Prevention Working Group was first convened in 2005 to develop and test evidence-based methods for the evaluation of genomic tests in transition from research to clinical and public health practice. Over the ensuing years, the Working Group has met 26 times, publishing eight recommendation statements, two methods papers, and one outcomes paper, as well as planning and serving as technical experts on numerous associated systematic reviews. Evaluation of Genomic Applications in Practice and Prevention methods have evolved to address implications of the proliferation of genome-wide association studies and are currently expanding to face challenges expected from clinical implementation of whole-genome sequencing tests. In this article, we review the work of the Evaluation of Genomic Applications in Practice and Prevention Working Group over the first 8 years of its existence with an emphasis on lessons learned throughout the process. It is hoped that in addition to the published methods of the Working Group, the lessons we have learned along the way will be informative to others who are producers and consumers of evidence-based guidelines in the field of genomic medicine.
Genet Med advance online publication 8 August 2013


evidence-based medicine; genetics; guideline development; public health genomics; systematic review methods
The completion of the human genome project was heralded as the dawn of the era of genomic-based personalized medicine. Numerous factors, however, have complicated the translation of scientific findings into clinical genomic testing with measurable health outcomes. The responsible integration of genomic technologies into medical care poses challenges to health-care providers, consumers, and other stakeholders. These emerging genomic applications to health care have been discovered by a scientific community that may have complex ties to industry and that is championed by strong public advocates and protected from rigorous scrutiny under the philosophy of genetic exceptionalism; in addition, these genomic applications are provided via direct access through advertising to a public with few resources for objective information.
Nonetheless, the potential of the human genome project to fundamentally change our understanding of disease causation cannot be overstated. The ability to tailor clinical and public health interventions to individuals or populations on the basis of their predisposition to diseases or response to treatment remains an inspiring goal of genomic medicine, and novel genomic diagnostics are allowing molecular targeting of therapies. As in any translation of new technology to health care, critical issues in genomic testing are now being defined. Little consensus exists among key stakeholders regarding the framework for developing, implementing, and evaluating genomic testing, and there are often sparse clinical data supporting the utilization of genomic testing in caring for patients. There are gaps in knowledge and oversight that could lead to serious harms.1 While working toward the realization of the potential of genomics to improve health, it is imperative to implement processes that can protect individuals from the potential harms of premature implementation of genomic testing while supporting innovations that may produce significant improvements in health. It was in response to this imperative that the Centers for Disease Control and Prevention created the Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative. The EGAPP initiative was designed to support the translation of scientific evidence on genomic testing into clinical practice. This article outlines the lessons learned from the EGAPP initiative, in the context of efforts of various professional, governmental, and private entities to consider how to advance genomic science along the translational continuum from bench to bedside while also addressing current and future challenges to genomics research.

No hay comentarios: