domingo, 12 de abril de 2015

Preventing Chronic Disease | Does Perceived Neighborhood Walkability and Safety Mediate the Association Between Education and Meeting Physical Activity Guidelines? - CDC

full-text ►

Preventing Chronic Disease | Does Perceived Neighborhood Walkability and Safety Mediate the Association Between Education and Meeting Physical Activity Guidelines? - CDC



PCD Logo



Does Perceived Neighborhood Walkability and Safety Mediate the Association Between Education and Meeting Physical Activity Guidelines?

Michael Pratt, MD, MSPE, MPH; Shaoman Yin, PhD, MSPH; Robin Soler, PhD; Rashid Njai, PhD, MPH; Paul Z. Siegel, MD, MPH; Youlian Liao, MD

Suggested citation for this article: Pratt M, Yin S, Soler R, Njai R, Siegel PZ, Liao Y. Does Perceived Neighborhood Walkability and Safety Mediate the Association Between Education and Meeting Physical Activity Guidelines? Prev Chronic Dis 2015;12:140570. DOI:http://dx.doi.org/10.5888/pcd12.140570External Web Site Icon.
PEER REVIEWED

Abstract

The role of neighborhood walkability and safety in mediating the association between education and physical activity has not been quantified. We used data from the 2010 and 2012 Communities Putting Prevention to Work Behavioral Risk Factor Surveillance System and structural equation modeling to estimate how much of the effect of education level on physical activity was mediated by perceived neighborhood walkability and safety. Neighborhood walkability accounts for 11.3% and neighborhood safety accounts for 6.8% of the effect. A modest proportion of the important association between education and physical activity is mediated by perceived neighborhood walkability and safety, suggesting that interventions focused on enhancing walkability and safety could reduce the disparity in physical activity associated with education level.

Acknowledgments

The findings and conclusions of this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. The authors declare no conflicts of interest and have not received funding to support this work. The authors acknowledge valuable input and support from staff and leadership of the National Center for Chronic Disease Prevention and Health Promotion, and Divisions of Nutrition, Physical Activity and Obesity, and Community Health. Special thanks to Ursula Bauer, Dana Shelton, Leonard Jack, Nicole Flowers, Joan Dorn, Thomas Schmid, and Janet Fulton.

Author Information

Corresponding Author: Michael Pratt, MD, MSPE, MPH, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Mailstop F-80, 4770 Buford Hwy, NE, Atlanta GA 30341. Telephone: 404-770-5403. Email: mpratt@cdc.gov.
Author Affiliations: Robin Soler, Rashid Njai, Paul Z. Siegel, Youlian Liao, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia; Shaoman Yin, SciMetrika, LLC, Durham, North Carolina.

References

  1. US Department of Health and Human Services. 2008 physical activity guidelines for Americans. Hyattsville (MD): US Department of Health and Human Services; 2008. http://www.health.gov/paguidelines.
  2. Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW; Lancet Physical Activity Series Working Group. Correlates of physical activity: why are some people physically active and others not? Lancet 2012;380(9838):258–71. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  3. Carlson JA, Bracy NL, Sallis JF, Millstein RA, Saelens BE, Kerr J, et al. Sociodemographic moderators of relations of neighborhood safety to physical activity. Med Sci Sports Exerc 2014;46(8):1554–63. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  4. Marmot M. Social determinants of health inequalities. Lancet 2005;365(9464):1099–104. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  5. Heath GW, Parra DC, Sarmiento OL, Andersen LB, Owen N, Goenka S, et al. ; Lancet Physical Activity Series Working Group. Evidence-based intervention in physical activity: lessons from around the world. Lancet 2012;380(9838):272–81. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  6. Nelson DE, Holtzman D, Bolen J, Stanwyck CA, Mack KA. Reliability and validity of measures from the behavioral risk factor surveillance system (BRFSS). Soz Praventivmed 2001;46(Suppl 1):S3–42. PubMedExternal Web Site Icon
  7. Bunnell R, O’Neil D, Soler R, Payne R, Giles WH, Collins J, et al. Fifty communities putting prevention to work: accelerating chronic disease prevention through policy, systems, and environmental change. J Community Health 2012;37(5):1081–90 . CrossRefExternal Web Site Icon
  8. Kline RB. Principles and practice of structural equation modeling. 3rd edition. New York (NY): The Guilford Press; 2010.
  9. Ditlevsen S, Christensen U, Lynch J, Damsgaard MT, Keiding N. The mediation proportion: a structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable. Epidemiology 2005;16(1):114–20. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  10. Frieden TR. A framework for public health action: the health impact pyramid. Am J Public Health 2010;100(4):590–5. CrossRefExternal Web Site Icon PubMedExternal Web Site Icon
  11. Loustalot F, Carlson SA, Fulton JE, Kruger J, Galuska DA, Lobelo F. Prevalence of self-reported aerobic physical activity among US states and territories — Behavioral Risk Factor Surveillance System, 2007. J Phys Act Health 2009;6(Suppl 1):S9–17. PubMedExternal Web Site Icon

No hay comentarios: